
RENDERING
Technical Architect
Ubisoft MontréalJalal El Mansouri

3D TEAM

Alan Quayle Jalal El Mansouri Pierre-Marc Bérubé

Benjamin Rouveyrol John Huelin Yoann Rocagel

Zhuo Chen

AGENDA
RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

AGENDA
RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

• Rebirth of a loved franchise that is
precious to a lot of hard-core gamers

• Gameplay driven

• Destruction as a core gameplay mechanic
• Destruction must be consistent between

platforms

• First Rainbow Six shipping with the engine
• Lots of legacy code from previous

prototypes

SIEGE TECH MISSION
• Targeting 60FPS:

• GPU : 14ms average on non combat situations
• CPU : Max 38ms linear time on CPU (consoles)

• Provide scalable destruction

• Ship at a higher resolution than 720p on all consoles
• Commit to 4K on PC at a decent framerate

• Provide a strong PC version on a console oriented production
• Fitting on 1GB of RAM becomes a challenge with current gen

SIEGE IS A LIVE GAME

• Graphics features can be continually
iterated on

• Test new tech to improve look or comfort
• Auto-exposure for players

• Be careful not to break things!

• Hierarchical view of a GPU frame
• Average 5ms spent on geometry rendering

• Heavy use of culling!
• Shadow caching!

• Average 5ms spent on lighting (SSR included)
• Checkerboard rendering helps!
• SSAO & SSR ray trace done in async

• Average 4ms spent on post processing/other full screen processing

SIEGE FRAME

GRAPHIC
PIPE

ASYNCH
PIPE

• Hierarchical view of a CPU critical path

• 10ms avg on the critical path
• All passes and tasks able to fork and join to minimize critical path
• Shadow caching!

• Max 4ms linear spent on opaque pass
• Material based draw call system!

SIEGE FRAME

First person
rendering

400 best occluders
to depth buffer Generate Hi-Z Opaque culling

& rendering

OPAQUE RENDERING

SHADOW RENDERING

• All shadows are cache based
• Use cached Hi-Z for culling

• Sunlight shadow done in full resolution
• Separate pass to relieve lighting resolve VGPR pressure
• Uses Hi-Z representation of the cached shadow map to reduce the work per pixel

• Local lights are resolved in a quarter resolution
• Resolved results stored in a texture array
• Lower VGPR usage on light accumulation
• Bilateral upscale

SHADOW RENDERING –SUN / MOON
• Shadow map containing all static objects built on load

6Kx6K 16bit

512x512 ESM

Hi-Z

• Ability to scale shadow cost by mixing cascades with static map
• Static Hi-Z shadow map always used for dynamic object culling

• On Xbox One :
• 1st cascades are fully dynamic (not enough resolution with 6K)
• 2nd and 3rd cascades renders dynamic objects only and blend with the static shadow map
• 4th cascade is substituted by the static shadow map

+

SHADOW RENDERING –SUN / MOON

SHADOW RENDERING –LOCAL PROJECTORS

• We handle a maximum of 8 visible shadowed local lights

Static shadow map Hi-Z

On new
visible light

Each frame
Render dynamic

objects

Copy

LIGHTING
• Uses a clustered structure on the frustum:

• 32x32 pixels based tile
• Z exponential distribution

• Hierarchical culling of light volume to fill the structure

• Local cubemaps regarded as lights

• Shadows, cubemaps and gobos reside in textures arrays
• Deferred uses pre-resolved shadow texture array
• Forward uses shadows depth buffer array

AGENDA
RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

RAINBOW SIX DESTRUCTION

ART DIRECTION
• When destruction happens you need to feel that something big went on!

FLOORS & WALLS
• Procedurally generated unique geometry
• Poking holes degrades occlusion efficiency

DESTRUCTIBLE PROPS & DEBRIS
• Generally smaller meshes but in great numbers
• Can be instanced or unique

UNIQUE
GEOMETRY

100s OF
DEBRIS

A PROP AABB THIS
BIG WILL FAIL

OCCLUSION TEST

RAINBOW SIX DESTRUCTION

• Early prototypes were largely graphic bound (CPU and GPU) on average

• PC DX11 deferred contexts aren’t that great at scaling

• Material based draw call system
• Materials define destruction properties
• Debris share material
• See [Haar&Altonen15]

• In need of granularity in culling to keep up with destruction

UNIFIED BUFFERS

• A lot of resources in Rainbow Six reside in an unified buffer of some sort:
• Unified Vertex Buffer
• Unified Index Buffer
• Unified Constant Buffer
• …

• Structured buffers built on top of raw buffers with auto generated code:
• Using C++ data descriptors for GPU unified data
• Meta data passed on to specify access pattern

UNIFIED BUFFERS - CONSTANT

UNIFIED BUFFERS - BENEFITS

• Complete control over data layout
• We can easily experiment with different data type accesses (AOS, SOA,

Structure of u32 Arrays…)
• Custom packing and support for new data types

• High level API supports broadcasting values

• Code auto-generation allows us to migrate to new access patterns easily

MATERIAL BASED DRAW CALLS

• Geometry and constants are unified

• A draw call is then defined by :
• Shaders
• Non-Unified Resources (Textures, etc…)
• Render States (Sampler States, Raster States)

• Elements that share the above are batched together

• Passes that don’t use a subset of the resources and states are further batched together

GATHERING DRAW CALLS

• On initialization, each submesh instance is mapped to 3 batches: Normal, Shadow and Visibility

• The batch types used to mask non necessary data

• Each batch will correspond to a MultiDrawIndexedIndirect command

SUBMESH
INSTANCE X

NORMAL BATCH 1

NORMAL BATCH 2
SHADOW BATCH 1

VISIBILITY BATCH 1

1

X2
3

NORMAL BATCH 3VISIBILITY BATCH 2

• Each submesh instance has a globally unique index:
• Index used to fetch all data
• Multiple indirection needed

Mesh Index SUBMESH INSTANCE INDEX

MESH INDEX

SUBMESH INDEX

ENTIT Y INDEX

MESH INSTANCE INDEX

Mesh Index

BASE VERTEX OFFSET

BASE CLUSTER OFFSET

…

Mesh Index

ENTITY MATRIX

ENTITY INVSCALE

…

GATHERING DRAW CALLS

• For each pass gather the submesh instance
index into a dynamic buffer:
• Each pass maps to one batch type exclusively
• Buffer filled in multithreaded jobs (1.5ms linear)

• Extra data to perform culling is added:
• MultiDrawIndexedIndirect entry
• New index buffer offset
• Additional culling flags

PASS BUFFER

MESH INDEX

SUBMESH INSTANCE INDEX

DRAW BUFFER OFFSET

INDEX BUFFER OFFSET

CULLING FLAGS

MESH INDEX

SUBMESH INSTANCE INDEX

DRAW BUFFER OFFSET

INDEX BUFFER OFFSET

CULLING FLAGS

….

GATHERING DRAW CALLS

PERFORMING CULLING

We define multiple types of culling:
• Level 1: Submesh instance culling
• Level 2: Submesh chunck culling
• Level 3: Submesh triangle culling

PASS
BUFFER

CULLING
LEVEL 1

CULLING
LEVEL 2

CULLING
LEVEL 3

DRAW
CALL

DISCARD

DISCARD

LEVEL 1 CULLING LEVEL 2 CULLING

LEVEL 3 CULLING

TRIANGLE NORMAL
CULLING

PERFORMING CULLING

SCREEN SPACE SIZE
CULLING

DISTANCE CULLING

FRUSTUM CULLING

OCCLUSION CULLING

SCREEN SPACE SIZE
CULLING

FRUSTUM CULLING

ORIENTATION CULLING

OCCLUSION CULLING

PERFORMING DRAW CALLS

PASS BUFFER

MESH INDEX

SUBMESH INSTANCE 1

DRAW BUFFER OFFSET

INDEX BUFFER OFFSET

CULLING FLAGS

MESH INDEX

SUBMESH INSTANCE 2

DRAW BUFFER OFFSET

INDEX BUFFER OFFSET

CULLING FLAGS

….

MULTIDRAW BUFFER

BATCH 1

MULTIDRAW PRAMETERS

CULLING

MULTIDRAW PRAMETERS

….

BATCH 2

MULTIDRAW PRAMETERS

MULTIDRAW PRAMETERS

….

PERFORMING A DRAW CALL

VERTEX DATA

UNIFIED VERTEX BUFFER

UNIFIED CONSTANT BUFFER

SUBMESH INSTANCE INDEX BUFFER

DRAW CALL ENTRY PRAMETERS

INDEX COUNT (N)

INSTANCE COUNT (1 .. N)

START INDEX

BASE VERTEX (0)

START INSTANCESUBMESH INSTANCE INDEX

MESH DESCRIPTOR

DYNAMIC INDEX BUFFER

PERFORMING A DRAW CALL
Culling compute shader

writes out instance indices
in a Per Instance Buffer

PERFORMING A DRAW CALL
ReadFirstLane is used in the pixel shader when
loading UCB values with UnformsOffsets to be

able to use the GCN scalar unit & registers

RAINBOW SIX DESTRUCTION

+5 DRAWCALLS

BATCH
VISUALISATION

BATCH
VISUALISATION

NUMBER OF UNBATCHED DC
(TOTAL)

NUMBER OF BATCHED DCS
(VIS + GBUFFER + DECALS)

NUMBER OF BATCHED DCS
(SHADOWS)

CULLING EFFICIENCY

10537 412 64 73%

RESULTS

FUTURE WORK

• Pushing empty draw calls has a cost
• We try to hide it on consoles using async jobs
• Specifying the number of draw calls on the GPU would be the next step

• Using bindless resources to further batch draw calls

• Moving most of the scene graph traversal to the GPU
• LoD selection logic

AGENDA
RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

60 FPS MADE EASY

• We wanted 60FPS early in production
• First playable was running at around 50 on consoles
• 60 FPS average was hit a couple weeks after!

• Killzone approach seemed like a good idea to start with (see [Valiant14])
• Keeping nearly the same budget per pixel as a 30FPS game for screen pixels rendering
• EQAA based, we wanted it on PC too (low end and 4K support)

• Big “quick” win without having a major quality impact
• Silently enabled to see if people noticed

TEMPORAL INTERLACED RENDERING

• To target 1920x1080:
• We render geometry and lighting to 960x1080 render target

• 3D velocity vector per rendered pixel
• R12G12B8 format

• Projection matrix is offset each frame

• Need to divide x gradient by 2 to have similar texture filtering

TEMPORAL INTERLACED RENDERING

• Things not represented by motion on screen need to be dealt with
• Tried to maintain lighting/shadow changes to handle them better
• Color clamping (See [Karis14])

• Data tweaked so alternating effects take place over at least two frames
• Police car flash lights, light flickering
• Flickering oscillators modified to avoid single frame 0 to 1 transitions

• Aliasing on vertical lines
• Not that easy after all!

CHECKERBOARD RENDERING

• Base idea came about to solve aliasing issues

• Experimented on a series of images to first test quality

• For most images PSNR was better using a checkerboard pattern:
• Visually the results were more pleasing too

• The idea of using MSAA 2X was bouncing around since the beginning
• We made a push for it for E3 2015

LINE NEIGHBORS INTERPOLATION

CHECKERBOARD NEIGHBORS
INTERPOLATION

LINE NEIGHBORS INTERPOLATION

CHECKERBOARD NEIGHBORS
INTERPOLATION

LINE NEIGHBORS INTERPOLATION

CHECKERBOARD NEIGHBORS
INTERPOLATION

CHECKERBOARD RENDERING IMPLEMENTATION
• Rendering to a ¼ size (½ width by ½ height) resolution

with MSAA 2X:
• We end up with half the samples of the full resolution image

• D3D MSAA 2X standard pattern
• 2 Color and Z samples

• Sample modifier or SV_SampleIndex input to enforce
rendering all sample

• Each sample falls on the exact pixel center of full screen
render target

CHECKERBOARD RENDERING BONUS

• Particle effects can be easily evaluated per pixel instead of per sample

• You can fit a lot more stuff in ESRAM!

• No need to fixup gradients in the shaders!

CHECKERBOARD RENDERING IMPLEMENTATION

GRADIENT
FIXUP

With LOD bias

Texture gradients are
represented by red lines

CHECKERBOARD RENDERING IMPLEMENTATION
• By offsetting the projection matrix again each frame we are able to alternate the pattern

• We don’t always have access on PC to change sample locations

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

Even frames Odd frames

FILLING IN THE BLANKS

• To reconstruct colors for unknown pixels P and Q, we sample
• Current frame direct neighbors linear-Z
• Current frame direct neighbors color
• History color and Z

G C

A P? D

E Q? B

F H

Even frames

C G

D P? A

B Q? E

H F

Odd frames

HISTORY COLOR/Z
• One neighbor gets picked for motion velocity:

• Closest one to the camera to preserve silhouette

• With motion velocity we sample the previous resolved color
• That way we get to use filtering, but introduces accumulation errors!

• We clamp the re-projected color with A B E F for Q

• Using previous depth computed from motion we compute a confidence value
• Used to blend back toward the unclamped value.

G C

A P? D

E Q? B

F H

Even frames

C G

D P? A

B Q? E

H F

Odd frames

RESOLVED COLOR

• Having:
• The history color
• The interpolated color from direct neighbors

• A final color is computed using two additional weights:
• Color coherency:

• Minimum difference between A B E F for Q
• Magnitude of velocity

G C

A P? D

E Q? B

F H

Even frames

C G

D P? A

B Q? E

H F

Odd frames

COMPLETE FLOW

• Resolve quite complex
• Lots of tweaks for our content!

• Costs 1.4ms

• 8 – 10ms net win

Current Scene Color

Current Linear Depth

Previous Scene Color

Previous Linear Depth

Current Motion Vector

Previous Motion Vector

Calc Current Min Z

Sample motion Vector

Min-Z Min-Z Offset

Motion

Vector XY
Motion

Vector Z

Sample Previous Depths

Current Color YCoCg

Depth Occlusion Test

Prev Min-Z

Z-Confidence

Sample Previous Color

Prev Color

YCoCg AABB Clamping

Clamped Prev Color

Interpolate current neighbours

Current Interpolated Color

Luma Diff

Luma coherency

Un-clamping

Final blending

Output Unknown Pixels

Compute final confidence

Final History Color

Final Confidence

Deinterlaced Render Target

Sample Previous Motion

Pre Motion

Motion Coherency Test

Motion Coherency Ghosting--

Flickering++

Flickering--

Ghosting++

T-AA
• Integrates with the checkerboard rendering

• Can be run on the same resolve shader

• Done on the sub-sample level, MSAA 4X style jitters on top of the
checkerboard pattern

• Reprojectged color weight uses similar logic

• Additional “Unteething” used to remove bad checkerboard patterns

TEETH REMOVAL FILTER
• Resolve can introduce noticeable saw tooth patterns in the image

• We apply a filter to remove them

• The filter works on 5 horizontally or vertically adjacent pixels

0

1-d

1

NOT TEETH: 1X100 TEETH: 01010

• We setup a threshold d and binaries pixel each to
0 or 1 if they fall in the range of [0, d] or [1 – d, 1]

• We detect a 01010 or 10101 pattern

FUTURE DEVELOPMENTS

• Checkerboard technique was a good win for us
• We are going to push more quality per pixel and build up on it
• Implementation mostly by trial and error, we will move to a more

scientific approach on the different confidence weights and values used

SPECIAL THANKS

• Alexandre Lahaise
• Chen Ka
• Michel Bouchard
• Lionel Berenguier

• Paul Vlasie
• Stephen Hill
• Stephen McAuley
• Ulrich Haar

Thank you!
RAINBOW RENDERER OVERVIEW
MATERIAL BASED DRAW CALL SYSTEM
CHECKERBOARD RENDERING

QUESTIONS?

REFERENCES

• Karis14: https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf

• Haar&Aaltonen15: http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf

• Schulz14: http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf

• Valient14: http://www.slideshare.net/guerrillagames/killzone-shadow-fall-gdc2014-valient-killzonegraphics

• Hill11: http://blog.selfshadow.com/publications/practical-visibility/

• Intro video by 20Powerproductions : https://www.youtube.com/watch?v=Rc0V98BzW3g

• Icons by FLATICON.COM

https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf
http://www.slideshare.net/guerrillagames/killzone-shadow-fall-gdc2014-valient-killzonegraphics
http://blog.selfshadow.com/publications/practical-visibility/
https://www.youtube.com/watch?v=Rc0V98BzW3g
FLATICON.COM

BONUS
SLIDES

GBUFFER LAYOUT

R G B A

World Normal (RGB10) GI Normal Bias (A2)

BaseColor (sRGB8) Config (A8)

Metalness (R8) Glossiness (G8) Cavity (sB8) Aliased Value (A8)

Velocity.xy (RGB8) Velocity.z (A8)

CONFIG ALIASED VALUE

Default Self AO (sA8)

Skin Skin SSS Mask (sA8)

Translucent Translucence (sA7) + Back Face (A1)

4 Render Targets (RGB10A2 + 3 * RGBA8) + Depth sStencil (D32 – S8)

GBUFFER RENDERING
• We use inverted depth combined with a D32 float for better uniform depth precision distribution

• For normals we experimented with BFN first
• We moved to a R10G10B10A2 format to save VGPRs and ALU

• Velocity vector is 3D and enjoys a higher precision on the X & Y axis to support our temporal
reprojection rendering

• GBuffer Layer 2’s alpha is aliased depending on the material type
• Self-AO was not used since SSBC revealed itself sufficient most of time
• We apply a higher SSAO factor on the first person character

GBUFFER RENDERING

LIGHTING - GI

• GI is static and is based on a simplification of Assassin’s Creed Unity GI
• Low resolution volume covering whole map:

• Sky visibility SH
• 1m to 2m per voxel

• High resolution volume covering the playable area:
• Sky visibility SH
• Bounce color SH
• 25cm per voxel

Screenshot of low res Volume Screenshot of high res Volume

LIGHTING–DIRECT

• We generate a clustered structure on the frustum:
• 32x32 pixels based tile
• Z exponential distribution
• Hierarchical culling of light volume to fill the structure

• Light cookies (gobos) are gathered in an array to be able to fetch them dynamically
• Simply part of the light data as indices in an array

LIGHTING–SSR

• Done in ¼ resolution

• Uses face normal to give ray direction

• Temporal reprojection with light accumulation (ray-based, not depth based)

• Linear marching, steps gloss dependent
• Jitter start ray position and direction
• Temporal reprojection smooth the results

• Invalidate previous frame result on camera movement

LIGHTING–REFLECTION

• Local cubemaps
• Parallax corrected
• Regarded as lights, volume injected in clustered lighting structure
• Reside in cubemap array for easy access

• Cubemaps applied during SSR application
• Local cubemaps are SSR’s primary fallback
• Global cubemap is secondary fallback Screenshot showing cubemap volumes

LIGHTING–FORWARD

• Support same set of features as the deferred pass:
• All shadows, cubemaps, cookies are in texture arrays

• VGPR consumption issues:
• Scaling down on the quality of shadow filtering
• Glass disables some lights types
• Still lowest occupancy in our renderer

• Expensive particles use the ESM version of the shadow cache

SCHEDULING

• Graphic thread managing work queues and stealing work when necessary, work stolen gets
executed on the immediate context when possible to minimize overhead.

• On PC no draw calls are recorded we let the material based draw call pipeline handle the scaling.

• On consoles graphics work has priority on Cluster 0 – Core 0, 1, 2 and we also maintain cluster
locality when scheduling tasks.
• Fork & join work can take a turn for the worst when hammering shared atomics. (add numbers)

SCHEDULING

• Rendering-specific scheduler on top of the engine scheduler:
• Full control of graphic task behavior to fit in our budgets
• Task dependencies code defined

• Investing on visualisation tools would have been worth while

• First implementation used system fibers
• Workers can steal a job with more priority instead of waiting
• Fibers confusing to programmers
• Some systems have trouble displaying them properly in the debugger

• We moved to a simpler model where yielding just executes a new job on the current context

GRAPHIC CPU PERFORMANCES ON RAINBOW

• Beside from initialization, zero tolerance global allocator usage during the frame
• Heavy use of per worker thread local allocator

• Resets when outermost job finishes
• Helps on cache locality and more flexible

• Heavy use of pooling
• Dangling pointers becomes harder
• Adding memory state values on builds to check validity

• Memory access patterns were 95% of the optimization works on the graphic side
• Per thread gather lists are used to decrease inter thread communication
• Atomics have an important cost if not used properly

SLI SUPPORT

• Driver tracking disabled on all resources

• Simple scoping interface for update of resources that need sync
• One line addition to the code when necessary

• Update of a couple of large buffers was implemented by propagating the
changes manually on each GPU
• A lot more efficient than synching buffers
• Update of unified constant buffers takes a couple of μs, copy brakes scaling

